Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.706
Filtrar
1.
Sci Rep ; 14(1): 9342, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653763

RESUMO

Chickpea is a highly nutritious protein-rich source and one of the major crops to alleviate global malnutrition, but poor seed quality affects its productivity. Seed quality is essential for better crop establishment and higher yields, particularly in the uncertain climate change. The present study investigated the impact of botanical priming versus hydropriming and bavistin seed treatment on chickpea seeds. A detailed physiological (germination percentage, root and shoot length, vigour index) and biochemical (amylase, protease, dehydrogenase, phytase, and lipid peroxidation) analysis was carried out in order to assess the effect of priming treatments. Turmeric-primed seeds showed better germination rate (94.5%), seedling length, enzyme activity, and lower malondialdehyde (MDA) content. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the expression of minor polypeptides of albumin and globulin in the primed seeds. Moreover, field experiments indicated increased crop growth, vigour, days to 50% flowering, yield and its attributing traits in turmeric-primed seeds. Botanical priming can increase chickpea yield by up to 16% over the control group. This low-cost and eco-friendly technique enhances seed and crop performance, making it a powerful tool for augmenting chickpea growth. Therefore, chickpea growers must adopt botanical priming techniques to enhance the quality of seed and crop performance. Moreover, this approach is environmentally sustainable and can help conserve natural resources in the long term. Therefore, this new approach must be widely adopted across the agricultural industry to ensure sustainable and profitable farming practices.


Assuntos
Cicer , Produtos Agrícolas , Germinação , Sementes , Cicer/crescimento & desenvolvimento , Cicer/efeitos dos fármacos , Cicer/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Germinação/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/metabolismo , Malondialdeído/metabolismo
2.
Environ Sci Process Impacts ; 26(4): 710-720, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38385295

RESUMO

Metal-organic framework (MOF) materials have unique structure and fantastic properties for wide-ranging applications. Pilot studies highlighted the toxicity and potential threats of MOF materials to the environment. In this study, we revealed the phytotoxicity of MOF-74(Co) nanoparticles (NPs) and their inhibitory effects on the photosynthesis of pea seedlings (Pisum sativum L.). MOF-74(Co) NPs have limited influences on the germination of pea seeds, but distinct environmental effects of MOF-74(Co) NPs were found in pea seedlings. The root length of pea seedlings, fresh weight and dry weight decreased by 50.0%, 29.2% and 36.4%, respectively, compared with the control group, when the material concentration was greater than 100 mg L-1. The net photosynthetic rate decreased by 48% and the intercellular CO2 concentration increased by 183% upon exposure to MOF-74(Co) NPs. Mechanistically, MOF-74(Co) exposure led to Co uptake in pea seedlings; the increases were 223% for the root, 267% for the stem and 6562% for the leaves, respectively, when the MOF-74(Co) NP concentration was 10 mg L-1. The released Co ions from MOF-74(Co) NPs caused oxidative damage to leaves and induced damage to the acceptor side of photosynthesis system II. Our results indicated that the environmental toxicity of MOF materials was largely regulated by the metal centers. MOF materials with nontoxic metal elements are desirable for future applications.


Assuntos
Estruturas Metalorgânicas , Fotossíntese , Ervilhas , Plântula , Ervilhas/efeitos dos fármacos , Ervilhas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Estruturas Metalorgânicas/química , Fotossíntese/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Germinação/efeitos dos fármacos , Poluentes do Solo/toxicidade
3.
Ecotoxicol Environ Saf ; 242: 113885, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849906

RESUMO

Vanadium dioxide nanoparticles (VO2 NPs) have been massively produced due to their excellent metal-insulator transition characteristics for various applications. Pilot studies indicated the toxicity of VO2 NPs to bacteria and mammalian cells, but the environmental hazards of VO2 NPs to plants have been unrevealed to date. In this study, we reported the inhibitive effects of VO2 NPs to the growth and photosynthesis of pea seedlings. Laboratory synthesized monoclinic VO2 NPs (N-VO2), commercial nanosized VO2 NPs (S-VO2), and commercial microsized VO2 particles (M-VO2) were carefully characterized for environmental toxicity evaluations. VO2 particles were supplemented to culture medium for seed germination and seedling growth. All three VO2 samples did not affect the germination rates of pee seeds, while serious growth inhibition of pea seedlings was observed at 10 mg/L for S-VO2 and N-VO2, and 100 mg/L for M-VO2. VO2 particles had no impact on the chlorophyll contents, but the photosynthesis of leaf was significantly decreased following the consequence of N-VO2 > S-VO2 > M-VO2. The inhibition of photosynthesis was attributed to the damage of acceptor side of photosystem II by VO2 particles at high concentrations. Abundant bioaccumulations of vanadium in roots aroused oxidative damage and changed the root structure. Our results collectively indicated that the phytotoxicity of VO2 NPs was related to the concentration, size and crystalline degree.


Assuntos
Nanopartículas Metálicas , Óxidos , Plântula , Compostos de Vanádio , Germinação/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Compostos de Vanádio/toxicidade
4.
Arch Environ Contam Toxicol ; 82(3): 330-340, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35138446

RESUMO

Sugarcane crops are dependent on chemicals for maintaining plantations. Therefore, environmental consequences concern adjacent areas that can be affected by contaminants in common use, including pesticides and vinasse (i.e., a by-product from the ethanol industry). This study aimed to evaluate phytotoxicity through two plant bioassays with water from mesocosms contaminated with the herbicide 2,4-D (447.0 µg L-1), the insecticide fipronil (63.5 µg L-1), and sugarcane vinasse (1.3%). First, the germination test (4 d) with Eruca sativa L. assessed water samples collected three times after the contamination (2 h, 14 d, and 30 d), considering germination, shoot, and root growth. The results from this bioassay indicated higher phytotoxicity for 2,4-D as it fully inhibited the shoot and root growth even in low concentrations (0.2 µg L-1). However, no significant effect was reported for fipronil and vinasse. Also, the 2,4-D effects drastically decreased due to an expressive concentration reduction (99.4% after 30 d in mixture with vinasse). Second, the irrigation test with Phaseolus vulgaris L. and Zea mays L. considered shoot and root growth and biomass under 21 days after plants emergence. The herbicide 2,4-D inhibited the initial growth of tested species, especially the roots (up to 45% inhibition). Furthermore, sugarcane vinasse caused harmful effects on plant growth (up to 31% inhibition). Therefore, our data showed that these contaminants could inhibit plant germination and initial growth under our tested conditions. These evaluations can endorse risk assessments and water management in sugarcane crops surrounding areas.


Assuntos
Praguicidas , Saccharum , Destilação , Etanol , Germinação/efeitos dos fármacos , Praguicidas/toxicidade , Sementes , Água , Poluentes Químicos da Água/efeitos adversos , Poluição Química da Água/efeitos adversos
5.
J Biol Chem ; 298(4): 101734, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181340

RESUMO

Crop parasites of the Striga genera are a major biological deterrent to food security in Africa and are one of the largest obstacles to poverty alleviation on the continent. Striga seeds germinate by sensing small-molecule hormones, strigolactones (SLs), that emanate from host roots. Although SL receptors (Striga hermonthica HYPOSENSITIVE TO LIGHT [ShHTL]) have been identified, discerning their function has been difficult because these parasites cannot be easily grown under laboratory conditions. Moreover, many Striga species are obligate outcrossers that are not transformable, hence not amenable to genetic analysis. By combining phenotypic screening with ShHTL structural information and hybrid drug discovery methods, we discovered a potent SL perception inhibitor for Striga, dormirazine (DOZ). Structural analysis of this piperazine-based antagonist reveals a novel binding mechanism, distinct from that of known SLs, blocking access of the hormone to its receptor. Furthermore, DOZ reduces the flexibility of protein-protein interaction domains important for receptor signaling to downstream partners. In planta, we show, via temporal additions of DOZ, that SL receptors are required at a specific time during seed conditioning. This conditioning is essential to prime seed germination at the right time; thus, this SL-sensitive stage appears to be critical for adequate receptor signaling. Aside from uncovering a function for ShHTL during seed conditioning, these results suggest that future Ag-Biotech Solutions to Striga infestations will need to carefully time the application of antagonists to exploit receptor availability and outcompete natural SLs, critical elements for successful parasitic plant invasions.


Assuntos
Lactonas , Extratos Vegetais , Plantas , Striga , Germinação/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Lactonas/farmacologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/farmacologia , Plantas/parasitologia , Striga/efeitos dos fármacos , Striga/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163311

RESUMO

Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays an important role in the plant life cycle. The multiple transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) was precisely regulated to participate in the abscisic acid (ABA) mediated signaling cascade. However, the molecular mechanisms of how H2S regulates ABI4 protein level to control seed germination and seedling growth have remained elusive. In this study, we demonstrated that ABI4 controls the expression of L-CYSTEINE DESULFHYDRASE1 (DES1), a critical endogenous H2S-producing enzyme, and both ABI4 and DES1-produced H2S have inhibitory effects on seed germination. Furthermore, the ABI4 level decreased during seed germination while H2S triggered the enhancement of the persulfidation level of ABI4 and alleviated its degradation rate, which in turn inhibited seed germination and seedling establishment. Conversely, the mutation of ABI4 at Cys250 decreased ABI4 protein stability and facilitated seed germination. Moreover, ABI4 degradation is also regulated via the 26S proteasome pathway. Taken together, these findings suggest a molecular link between DES1 and ABI4 through the post-translational modifications of persulfidation during early seedling development.


Assuntos
Ácido Abscísico/farmacologia , Sulfeto de Hidrogênio/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Sementes/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Cisteína/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Germinação/efeitos dos fármacos , Mutação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163533

RESUMO

The need to feed 9.9 billion people by 2050 will require the coordination of farming practices and water utilization by nutrient-dense plants and crops. High levels of lead (Pb), a toxic element that can accumulate in plants, can lead to toxicity in humans. With the development of novel treatment technologies, such as atmospheric cold plasma (ACP) and engineered nanoparticles (NPs), the time to germination and levels of heavy metals in food and feed commodities can be reduced. This study provides insight into the impact of plasma-activated water (PAW) on the germination rates and effects of soybean seeds, and the resultant combination effects of zinc oxide uptake in the presence of lead. Soybean seedlings were watered with PAW (treated for 3, 5, and 7 min at 30, 50, and 70 kV), and the germination and growth rate were monitored for 10 days. The germinated seedlings were then grown hydroponically in a nutrient solution, and the biomass of each example was measured. The PAW treatment that resulted in the best growth of soybean seeds was then exposed to Pb and zinc-oxide nanoparticles (ZnONPs) to investigate heavy metal uptake in the presence of nanoparticles. After acid digestion, the rate of heavy metal uptake by the soybean plants was evaluated using inductively coupled plasma-mass spectrometry. The PAW seeds grew and germinated more quickly, demonstrating that the plasma therapy had an effect. The rate of heavy metal uptake by the plants was also shown to be 5x lower in the presence of ZnONP.


Assuntos
/crescimento & desenvolvimento , Metais Pesados/toxicidade , Gases em Plasma/farmacologia , Óxido de Zinco/toxicidade , Agricultura , Germinação/efeitos dos fármacos , Hidroponia , Nanopartículas Metálicas , Metais Pesados/análise , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , /efeitos dos fármacos , Espectrofotometria Atômica , Óxido de Zinco/análise
8.
PLoS One ; 17(2): e0262937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35148345

RESUMO

Wheat is an important crop, used as staple food in numerous countries around the world. However, wheat productivity is low in the developing world due to several biotic and abiotic stresses, particularly drought stress. Non-availability of drought-tolerant wheat genotypes at different growth stages is the major constraint in improving wheat productivity in the developing world. Therefore, screening/developing drought-tolerant genotypes at different growth stages could improve the productivity of wheat. This study assessed seed germination and seedling growth of eight wheat genotypes under polyethylene glycol (PEG)-induced stress. Two PEG-induced osmotic potentials (i.e., -0.6 and -1.2 MPa) were included in the study along with control (0 MPa). Wheat genotypes included in the study were 'KLR-16', 'B6', 'J10', '716', 'A12', 'Seher', 'KTDH-16', and 'J4'. Data relating to seed germination percentage, root and shoot length, fresh and dry weight of roots and shoot, root/shoot length ratio and chlorophyll content were recorded. The studied parameters were significantly altered by individual and interactive effects of genotypes and PEG-induced osmotic potentials. Seed germination and growth parameters were reduced by osmotic potentials; however, huge differences were noted among genotypes. A reduction of 32.83 to 53.50% was recorded in seed germination, 24.611 to 47.75% in root length, 37.83 to 53.72% in shoot length, and 53.35 to 65.16% in root fresh weight. The genotypes, 'J4', 'KLR-16' and 'KTDH-16', particularly 'J4' better tolerated increasing osmotic potentials compared to the rest of the genotypes included in the study. Principal component analysis segregated these genotypes from the rest of the genotypes included in the study indicated that these can be used in the future studies to improve the drought tolerance of wheat crop. The genotype 'J4' can be used as a breeding material to develop drought resistant wheat genotypes.


Assuntos
Germinação/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Plântula/efeitos dos fármacos , Triticum/genética , Secas , Genótipo , Pressão Osmótica , Análise de Componente Principal , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
9.
Sci Rep ; 12(1): 2191, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140298

RESUMO

Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts.


Assuntos
Antifúngicos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Phytophthora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , /química , Colocasia/efeitos dos fármacos , Colocasia/parasitologia , Fungos/efeitos dos fármacos , Germinação/efeitos dos fármacos , Micélio/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Esporângios/efeitos dos fármacos , Esporos/efeitos dos fármacos
10.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216242

RESUMO

Plants have two types of reproduction: sexual, resulting in embryo production, and asexual, resulting in vegetative bodies commonly derived from stems and roots (e.g., bulb, tuber). Dead organs enclosing embryos (DOEEs, such as seed coat and pericarp) are emerging as central components of the dispersal unit acting to nurture the embryo and ensure its survival in the habitat. Here we wanted to investigate the properties of dead organs enclosing plant asexual reproductive bodies, focusing on the garlic (Allium sativum) bulb. We investigated the biochemical and biological properties of the outer peel enclosing the bulb and the inner peel enclosing the clove using various methodologies, including bioassays, proteomics, and metabolomics. The garlic peels differentially affected germination and post-germination growth, with the outer peel demonstrating a strong negative effect on seed germination of Sinapis alba and on post-germination growth of Brassica juncea. Proteome analysis showed that dead garlic peels possess 67 proteins, including chitinases and proteases, which retained their enzymatic activity. Among primary metabolites identified in garlic peels, the outer peel accumulated multiple sugars, including rhamnose, mannitol, sorbitol, and trehalose, as well as the modified amino acid 5-hydroxylysine, known as a major component of collagen, at a higher level compared to the clove and the inner peel. Growth of Escherichia coli and Staphylococcus aureus was promoted by garlic peel extracts but inhibited by clove extract. All extracts strongly inhibited spore germination of Fusarium oxysporum f.sp. melonis. Thus, the garlic peels not only provide physical protection to vegetative offspring but also appear to function as a refined arsenal of proteins and metabolites for enhancing growth and development, combating potential pathogens, and conferring tolerance to abiotic stresses.


Assuntos
Alho/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Sementes/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
11.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216265

RESUMO

Theaflavin-3,3'-digallate (TFDG), a polyphenol derived from the leaves of Camellia sinensis, is known to have many health benefits. In this study, the antibacterial effect of TFDG against nine bacteria and the sporicidal activities on spore-forming Bacillus spp. have been investigated. Microplate assay, colony-forming unit, BacTiter-GloTM, and Live/Dead Assays showed that 250 µg/mL TFDG was able to inhibit bacterial growth up to 99.97%, while 625 µg/mL TFDG was able to inhibit up to 99.92% of the spores from germinating after a one-hour treatment. Binding analysis revealed the favorable binding affinity of two germination-associated proteins, GPR and Lgt (GerF), to TFDG, ranging from -7.6 to -10.3 kcal/mol. Semi-quantitative RT-PCR showed that TFDG treatment lowered the expression of gpr, ranging from 0.20 to 0.39 compared to the control in both Bacillus spp. The results suggest that TFDG not only inhibits the growth of vegetative cells but also prevents the germination of bacterial spores. This report indicates that TFDG is a promising broad-spectrum antibacterial and anti-spore agent against Gram-positive, Gram-negative, acid-fast bacteria, and endospores. The potential anti-germination mechanism has also been elucidated.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biflavonoides/farmacologia , Catequina/análogos & derivados , Esporos Bacterianos/efeitos dos fármacos , Catequina/farmacologia , Germinação/efeitos dos fármacos
12.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164249

RESUMO

Phenolic and non-phenolic chemotypes of Thymus pulegioides L. are common in Europe. Essential oils of these chemotypes, as various compositions of allelochemicals, can have different phytotoxic effects on neighboring plants in natural habitats. The aim of this study was to establish the distribution of carvacrol and geraniol in T. pulegioides, growing wild in Lithuania, and compare phytotoxity of essential oils of carvacrol and geraniol chemotypes on selected plant species. In investigating 131 T. pulegioides habitats, essential oils were isolated by hydrodistillation and analyzed by GC-FID and GC-MS. Phytotoxity of essential oils extracted from carvacrol and geraniol chemotypes transmitted through water and air to selected plants was determined under laboratory conditions. Pharmacologically valuable Hypericum perforatum L. and the important forage grass Phleum pratense L. were respectively selected for experimentation from among 35 medicinal plants and 10 feed Poaceae species, growing in T. pulegioides habitats. Field results showed that carvacrol is common throughout Lithuania's territory, whereas the geraniol is predominantly located under the continental climatic conditions of the eastern region of the country. In the laboratory experiment, it was established that there was stronger inhibition of P. pratense seed germination by the essential oil of the geraniol chemotype than the carvacrol chemotype. None of the H. perforatum seeds germinated after exposure to the essential oil of the geraniol chemotype. In general, this study builds on previous studies by providing further evidence that different T. pulegioides chemotypes have contrasting phytotoxic effects on neighboring plants within their natural habitats.


Assuntos
Monoterpenos Acíclicos/análise , Monoterpenos Acíclicos/toxicidade , Cimenos/análise , Cimenos/toxicidade , Ecossistema , Óleos Voláteis/química , Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Lituânia
13.
BMC Plant Biol ; 22(1): 84, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209839

RESUMO

BACKGROUND: Certain Fusarium exometabolites have been reported to inhibit seed germination of the cereal-parasitizing witchweed, Striga hermonthica, in vitro. However, it is unknown if these exometabolites will consistently prevent S. hermonthica incidence in planta. The study screened a selection of known, highly phytotoxic Fusarium exometabolites, in identifying the most potent/efficient candidate (i.e., having the greatest effect at minimal concentration) to completely hinder S. hermonthica seed germination in vitro and incidence in planta, without affecting the host crop development and yield. RESULTS: In vitro germination assays of the tested Fusarium exometabolites (i.e., 1,4-naphthoquinone, equisetin, fusaric acid, hymeglusin, neosolaniol (Neo), T-2 toxin (T-2) and diacetoxyscirpenol (DAS)) as pre-Striga seed conditioning treatments at 1, 5, 10, 20, 50 and 100 µM, revealed that only DAS, out of all tested exometabolites, completely inhibited S. hermonthica seed germination at each concentration. It was followed by T-2 and Neo, as from 10 to 20 µM respectively. The remaining exometabolites reduced S. hermonthica seed germination as from 20 µM (P < 0. 0001). In planta assessment (in a S. hermonthica-sorghum parasitic system) of the exometabolites at 20 µM showed that, although, none of the tested exometabolites affected sorghum aboveground dry biomass (P > 0.05), only DAS completely prevented S. hermonthica incidence. Following a 14-d incubation of DAS in the planting soil substrate, bacterial 16S ribosomal RNA (rRNA) and fungal 18S rRNA gene copy numbers of the soil microbial community were enhanced; which coincided with complete degradation of DAS in the substrate. Metabolic footprinting revealed that the S. hermonthica mycoherbicidal agent, Fusarium oxysporum f. sp. strigae (isolates Foxy-2, FK3), did not produce DAS; a discovery that corresponded with underexpression of key genes (Tri5, Tri4) necessary for Fusarium trichothecene biosynthesis (P < 0.0001). CONCLUSIONS: Among the tested Fusarium exometabolites, DAS exhibited the most promising herbicidal potential against S. hermonthica. Thus, it could serve as a new biocontrol agent for efficient S. hermonthica management. Further examination of DAS specific mode of action against the target weed S. hermonthica at low concentrations (≤ 20 µM), as opposed to non-target soil organisms, is required.


Assuntos
Fusarium/metabolismo , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Tricotecenos/farmacologia , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Microbiologia do Solo , Striga , Tricotecenos/metabolismo
14.
BMC Plant Biol ; 22(1): 28, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016603

RESUMO

BACKGROUND: Cyanide is a natural metabolite that exists widely in plants, and it is speculated to be involved in the regulation of various growth and development processes of plants in addition to being regarded as toxic waste. Previous studies have shown that exogenous cyanide treatment helps to improve seed germination, but the mechanism is still unclear. In this study, tomato (Solanum lycopersicum cv. Alisa Craig) was used as the material, and the effects of cyanide pretreatment at different concentrations on tomato seed germination were investigated. RESULTS: The results showed that exogenous application of a lower concentration of cyanide (10 µmol/L KCN) for 12 h strongly increased the tomato seed germination rate. RNA-Seq showed that compared with the control, a total of 15,418 differentially expressed genes (P<0.05) were obtained after pretreatment with KCN for 12 h, and in the next 12 h, a total of 13,425 differentially expressed genes (P<0.05) were regulated. GO and KEGG analyses demonstrated that exogenous KCN pretreatment was involved in regulating the expression (mainly downregulation) of seed storage proteins, thereby accelerating the degradation of stored proteins for seed germination. In addition, KCN pretreatment was also involved in stimulating glycolysis, the TCA cycle and oxidative phosphorylation. Notably, it is shown that KCN acted on the regulation of plant hormone biosynthesis and perception, i.e., down-regulated the gene expression of ABA biosynthesis and signal transduction, but up-regulated the expression of genes related to GA biosynthesis and response. Consistent with this, plant hormone measurements confirmed that the levels of ABA were reduced, but GA levels were induced after pretreatment with KCN. CONCLUSION: These findings provide new insights into the regulation of seed germination by cyanide, that is cyanide-mediated seed germination occurs in a time- and dose-dependent manner, and is related to the mobilization of energy metabolism and the regulation of some plant hormone signals.


Assuntos
Cianetos/metabolismo , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética
15.
BMC Plant Biol ; 22(1): 41, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057736

RESUMO

BACKGROUND: We previously identified six drought-inducible CC-type glutaredoxins in cassava cultivars, however, less is known about their potential role in the molecular mechanism by which cassava adapted to abiotic stress. RESULTS: Herein, we investigate one of cassava drought-responsive CC-type glutaredoxins, namely MeGRXC3, that involved in regulation of mannitol-induced inhibition on seed germination and seedling growth in transgenic Arabidopsis. MeGRXC3 overexpression up-regulates several stress-related transcription factor genes, such as PDF1.2, ERF6, ORA59, DREB2A, WRKY40, and WRKY53 in Arabidopsis. Protein interaction assays show that MeGRXC3 interacts with Arabidopsis TGA2 and TGA5 in the nucleus. Eliminated nuclear localization of MeGRXC3 failed to result mannitol-induced inhibition of seed germination and seedling growth in transgenic Arabidopsis. Mutation analysis of MeGRXC3 indicates the importance of conserved motifs for its transactivation activity in yeast. Additionally, these motifs are also indispensable for its functionality in regulating mannitol-induced inhibition of seed germination and enhancement of the stress-related transcription factors in transgenic Arabidopsis. CONCLUSIONS: MeGRXC3 overexpression confers mannitol sensitivity in transgenic Arabidopsis possibly through interaction with TGA2/5 in the nucleus, and nuclear activity of MeGRXC3 is required for its function.


Assuntos
Glutarredoxinas/genética , Manihot/genética , Pressão Osmótica/fisiologia , Proteínas de Plantas/genética , Motivos de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Glutarredoxinas/metabolismo , Manitol/farmacologia , Pressão Osmótica/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
16.
Biochem Biophys Res Commun ; 587: 119-125, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34871999

RESUMO

Abscisic acid (ABA) plays an important role in seed germination, stomatal closure, and seedling growth inhibition in plants. Among downstream genes whose expression levels are regulated by AFA1 (Arabidopsis F-box Protein Hypersensitive to ABA 1), one gene, AtHAD1 upregulated by ABA was selected from Arabidopsis. AtHAD1 was induced by drought and salt stresses as well as by ABA and was found in dry seeds. Its loss-of-function mutants exhibited increased ABA-sensitivity in germination, seedling growth, and stomatal closure. In addition, the mutants displayed a lower water loss rate and higher survival rate under drought stress than the wild-type plants, indicating that a loss of AtHAD1 leads to enhanced drought tolerance. These results show that AtHAD1 has an inhibitory role in the ABA response and ABA-mediated drought tolerance. The expression levels of several ABA-responsive genes in athad1 were higher than those in the wild-type under the ABA treatment, suggesting that AtHAD1, as a negative regulator in the ABA response, could be associated with the downregulation of the ABA-responsive genes. The phosphatase assay showed that AtHAD1 exhibits phosphatase activity. Monitoring of the subcellular localization of GFP-fused AtHAD1 proteins indicated that AtHAD1 exists in the nucleus and cytoplasm. Overall, this study shows that Arabidopsis HAD1 as an intracellular phosphatase negatively functions in the ABA-mediated cellular responses. This research could serve as a research basis to understand the functional link between ABA signaling and the regulation process of the cellular phosphate level.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases/genética , Monoéster Fosfórico Hidrolases/genética , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/metabolismo , Adaptação Fisiológica/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Salinidade , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Transdução de Sinais , Estresse Fisiológico
17.
Plant Physiol ; 188(2): 1369-1384, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850204

RESUMO

The obligate hemiparasitic weed Striga hermonthica grows on cereal roots and presents a severe threat to global food security by causing enormous yield losses, particularly in sub-Saharan Africa. The rapidly increasing Striga seed bank in infested soils provides a major obstacle in controlling this weed. Striga seeds require host-derived strigolactones (SLs) for germination, and corresponding antagonists could be used as germination inhibitors. Recently, we demonstrated that the common detergent Triton X-100 is a specific inhibitor of Striga seed germination by binding noncovalently to its receptor, S. hermonthica HYPO-SENSITIVE TO LIGHT 7 (ShHTL7), without blocking the rice (Oryza sativa) SL receptor DWARF14 (OsD14). Moreover, triazole ureas, the potent covalently binding antagonists of rice SL perception with much higher activity toward OsD14, showed inhibition of Striga but were less specific. Considering that Triton X-100 is not suitable for field application and by combining structural elements of Triton and triazole urea, we developed two hybrid compounds, KK023-N1 and KK023-N2, as potential Striga-specific germination inhibitors. Both compounds blocked the hydrolysis activity of ShHTL7 but did not affect that of OsD14. Binding of KK023-N1 diminished ShHTL7 interaction with S. hermonthica MORE AXILLARY BRANCHING 2, a major component in SL signal transduction, and increased ShHTL7 thermal specificity. Docking studies indicate that KK023-N1 binding is not covalent but is caused by hydrophobic interactions. Finally, in vitro and greenhouse tests revealed specific inhibition of Striga seed germination, which led to a 38% reduction in Striga infestation in pot experiments. These findings reveal that KK023-N1 is a potential candidate for combating Striga and a promising basis for rational design and development of further Striga-specific herbicides.


Assuntos
Grão Comestível/parasitologia , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Plantas , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Striga/efeitos dos fármacos , Striga/crescimento & desenvolvimento , Agentes de Controle Biológico , Produtos Agrícolas/parasitologia , Sementes/efeitos dos fármacos , Controle de Plantas Daninhas/métodos
18.
J Antibiot (Tokyo) ; 75(1): 44-47, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34522026

RESUMO

A rare actinomycetal strain of the genus Actinomycetospora was found to produce a new tryptophan derivative, designated mycetoindole (1). The structure of 1 was determined to be N-3-methylcrotonoyl (Z)-dehydrotryptophan by NMR and MS analytical methods. Compound 1 reduced the root growth of lettuce Lactuca sativa seedlings at concentrations above 0.1 µM and almost completely inhibited seed germination at 10 µM.


Assuntos
Actinobacteria/metabolismo , Actinobacteria/química , Animais , Bactérias/efeitos dos fármacos , Fermentação , Germinação/efeitos dos fármacos , Humanos , /crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula , Triptofano/análogos & derivados , Triptofano/biossíntese
19.
J Toxicol Environ Health A ; 85(2): 43-55, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34459359

RESUMO

Monilinia fructicola (Wint.) Honey is a plant pathogenic fungus that infects stone fruits such as peach, nectarine and plum, which are high demand cultivars found in Brazil. This pathogen may remain latent in the host, showing no apparent signs of disease, and consequently may spread to different countries. The aim of this study was to evaluate the activity of hydroalcoholic extract (HydE) obtained from Lactarius deliciosus (L.) Sf. Gray a mushroom, against M. fructicola phytopathogenic-induced mycelial growth. In addition, the purpose of this study was to examine phytotoxicity attributed to HydE using Brassica oleracea seeds, as well as cytotoxic analysis of this extract on cells of mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) (ATCC TIB-67). The L. deliciosus HydE inhibited fungal growth and reduced phytopathogen mycelial development at a concentration of 1.25 mg/ml. Our results demonstrated that the extract exhibited phytotoxicity as evidenced by (1) interference on germination percentage and rate index, (2) decreased root and initial growth measures, and (3) lower fresh weight of seedlings but no cytotoxicity in Vero cell lines. Data suggest that the use of the L. deliciosus extracts may be beneficial for fungal control without any apparent adverse actions on mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) viability.


Assuntos
Antifúngicos/farmacologia , Basidiomycota/química , Agentes de Controle Biológico/farmacologia , Animais , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Brasil , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Frutas/microbiologia , Germinação/efeitos dos fármacos , Camundongos , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Fenol/análise , Doenças das Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
20.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884860

RESUMO

Wheat is a critically important crop. The application of fungi, such as Trichoderma harzianum, to protect and improve crop yields could become an alternative solution to synthetic chemicals. However, the interaction between the fungus and wheat in the presence of stress factors at the molecular level has not been fully elucidated. In the present work, we exposed germinating seeds of wheat (Triticum aestivum) to the plant pathogen Fusarium culmorum and the popular herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of T. harzianum or its extracellular metabolites. Then, the harvested roots and shoots were analyzed using spectrometry, 2D-PAGE, and MALDI-TOF/MS techniques. Although F. culmorum and 2,4-D were found to disturb seed germination and the chlorophyll content, T. harzianum partly alleviated these negative effects and reduced the synthesis of zearalenone by F. culmorum. Moreover, T. harzianum decreased the activity of oxidoreduction enzymes (CAT and SOD) and the contents of the oxylipins 9-Hode, 13-Hode, and 13-Hotre induced by stress factors. Under the influence of various growth conditions, changes were observed in over 40 proteins from the wheat roots. Higher volumes of proteins and enzymes performing oxidoreductive functions, such as catalase, ascorbate peroxidase, cytochrome C peroxidase, and Cu/Zn superoxide dismutase, were found in the Fusarium-inoculated and 2,4-D-treated wheat roots. Additionally, observation of the level of 12-oxo-phytodienoic acid reductase involved in the oxylipin signaling pathway in wheat showed an increase. Trichoderma and its metabolites present in the system leveled out the mentioned proteins to the control volumes. Among the 30 proteins examined in the shoots, the expression of the proteins involved in photosynthesis and oxidative stress response was found to be induced in the presence of the herbicide and the pathogen. In summary, these proteomic and metabolomic studies confirmed that the presence of T. harzianum results in the alleviation of oxidative stress in wheat induced by 2,4-D or F. culmorum.


Assuntos
Ácido 2,4-Diclorofenoxiacético/farmacologia , Fusarium/patogenicidade , Hypocreales/metabolismo , Plântula/microbiologia , Triticum/microbiologia , Antioxidantes/metabolismo , Agentes de Controle Biológico/metabolismo , Clorofila/metabolismo , Ciclopentanos/metabolismo , Enzimas/metabolismo , Germinação/efeitos dos fármacos , Herbicidas/farmacologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Água/metabolismo , Zearalenona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...